Posted in Կենսաբանություն, Uncategorized

Կենսաբանություն․․․

Նախակորիզավոր կամ Պրոկարիոտ է կոչվում կորիզ չունեցող բջիջները։ Այն ունի հետևյալ հատկանիշները.

Նախակորիզավորների խմբին են պատկանում բակտերիաները և կապտականաչ ջրիմուռները։

  • Ժառանգական նյութը գտնվում է ցիտոպլազմայի մեջ։ Այն օղակաձև ԴՆԹ-ի մեկ մոլեկուլ է, որը կոչվում է նուկլեոտիդ։
  • Ակտիվ են բոլոր գեները, քանի որ սպիտակուցների հետ կոմպլեքս չեն կազմում։
  • Չունեն թաղանթային օրգանոիդներ, ունեն միայն ռիբոսոմներ, որոնք թաղանթ չունեն, իսկ թաղանթային օրգանոիդների դերը կատարում են պլազմային թաղանթի դեպի բջջի ներս առաջացած ծալքեր (մեզոսոմները)։
  • Բաժանումը պարզ է։
  • Բջջաթաղանթը կազմված է 2 շերտից։ Արտաքին շերտը հաստ է և ամուր, կոչվում է բջջապատ, որը ջրիմուռների մոտ կազմված է ցեյլուլոզից, իսկ բակտերիաները կազմված են ածխաջրերից։ Չափսերով փոքր են.
  • Նախակորիզավորների ցիտոպլազմայում են տեղակայված ռիբոսոմները, վակուոլները , իսկ կապտականաչ ջրիմուռներում և որոշ բակտերիաների ցիտոպլազմայում’ նաև լուսասինթեզ կատարող գունանյութը։
Posted in Ֆիզիկա տնային աշխատանք, Uncategorized

Հոսանքի ուժ․․․Ամպերաչափ

Էլեկտրական հոսանքի ազդեցությունները կարող են լինել թույլ կամ ուժեղ, ունենալ իրենց քանակական բնութագիրը:
Էլեկտրական հոսանքը քանակապես բնութագրող ֆիզիկական մեծությունը կոչվում է հոսանքի ուժ:
Հոսանքի ուժը ցույց է տալիս հողորդիչի լայնական հատույթով մեկ վայրկյանի ընթացքում անցնող լիցքի քանակը:
Եթե կամայական հավասար ժամանակներում հաղորդչի լայնական հատույթով անցնում են լիցքի նույն քանակը, ապա ադպիսի հոսանքն անվանում են հաստատուն հոսանք:
Հաստատուն հոսանքի ուժը նշանակում են I  տառով:
Հաստատուն հոսանքի ուժը դրական սկալյար մեծություն է, որը հավասար է հաղորդչի լայնական հատույթով հոսանքի ուղղությամբ t ժամանակում անցած q լիցքի հարաբերությանը այդ ժամանակին:
I=qt (1)
Միավորների միջազգային համակարգում հոսանքի ուժի միավորը կոչվում է ամպեր(Ա), ի պատիվ ֆրանսիացի ֆիզիկոս Անդրե Ամպերի (1775-1836թ.): 
  
mediapreview.jpg 
 
Ամպերի սահմանման հիմքում ընկած է հոսանքի մագնիսական ազդեցությունը: 1Ա-ին զուգահեռ հաճախ գործածվում են 1մԱ =103Ա և 1մկԱ =106Ա  միավորները:
Հոսանքի ուժի միջոցով, եթե այն հայտնի է, կարելի է որոշել t ժամանակում հաղորդիչով անցնող լիցքի մեծությունը.
q=It (2)
(2) բանաձևը թույլ է տալիս սահմանել էլեկտրական լիցքի միավորը՝ կուլոնը (Կլ).  1Կլ=1Ա1վ=1Ավ
Մեկ կուլոնն այն լիցքն է, որն անցնում է հաղորդչի լայնական հատույթով 1 վայրկյանում, երբ հոսանքի ուժը հաղորդչում  1Ա է:
Հոսանքի ուժը չափում են հատուկ սարքի՝ ամպերաչափի կամ միլիամպերաչափի միջոցով:
DOC000697281.jpg               M4250.jpg
Ամպերաչափի պայմանական նշանն է`
el-pr14.gif
Ամպերաչափն այնպես է կառուցված, որ շղթային միացնելիս, հոսանքի ուժը շղթայում գրեթե չի փոխվում: Ամպերաչափը էլեկտրական շղթային միացնելու ժամանակ անհրաժեշտ է պահպանել հետևյալ կանոնները.
Ամպերաչափը միացնում են հաջորդաբար էլեկտրական շղթայի այն բաղադրիչին, որի հոսանքի ուժը պետք է չափեն:
Ընդ որում, ոչ մի նշանակություն չունի ամպերաչափը միացվել է հետազոտվող սպառիչի աջ, թե ձախ կողմում: Հետևաբար, հոսանքի ուժը շղթայի հաջորդաբար միացված տեղամասում նույնն է:
Ամպերաչափի «+» սեղմակը անհրաժեշտ է միացնել այն հաղորդալարի հետ, որը գալիս է հոսանքի աղբյուրի դրական բևեռից, իսկ «» նշանով սեղմակը՝ այն հաղորդալարի հետ, որը գալիս է բացասական բևեռից:
Screenshot_4.png
Աղբյուրները
Posted in Ֆիզիկա տնային աշխատանք, Uncategorized

Էլեկտրական հոսանքը մետաղներում

Картинки по запросу էլեկտրական հոսանքը մետաղներում

Մետաղները կազմվացծ են դրական (+) իոններից ,որոնք տատանվում են բյուրեղացանցի հանգույցներում , և ազատ էլեկտրոններից ։ Էլեկտրական դաշտի բացակայությամբ ազատ էլեկտրոնները շարժվում են քաոսային ձևով ։ Այդ պատճառով էլ ազատ էլեկտրոնների համախումբն անվանում են էլեկտրոնային գազ։ Էլեկտրական դաշտի ազդեցությամբ ազատ էլեկտրոնները ձեռք են բերում նույն կողմն ուղղված լրացուցիչ արագություն և անկանոն շարժման հետ մեկտեղ շարժվում որպես մեկ ամբողջություն ՝ ստեղծելով Էլեկտրական հոսանք ։ Մետաղի բյուրեղացանցի իոններն էլեկտրական հոսանք չեն ստեղծում ։ Այս ենթադրությունը փորձով հաստատել է գերմանացի ֆիզիկոս Կառլ Ռիկեն XIX դարավերջին ։Բայց Ռիկեի փորձն անուղղակիորեն էր ապացուցում ,որ մետաղներում էլեկտրական հոսանքը պայմանավորված է ազատ էլեկտրոններով ։ 1916 թվականին ֆիզիկոսներ Թոմաս Ստյուարտը և Ռիչարդ Թոլմենը ,փորձով չափելով մետաղներում էլեկտրական հոսանք ստեղծող մասնիկների Տեսակարար լիցքը ՝ մասնիկի լիցքի հարաբերությունը նրա զանգվածին , ցույց են տվել ,որ այդ մասնիկներն ,իրոք էլեկտրոններ են ։

Փորձի հիմքում ընկաց էր հետևյալ գաղափարը ։ Եթե արագ շարժվող հաղորդիչը կտրուկ արգելակի ,ապա նրա մեջ առկա լիցքավորված մասնիկները , շնորհիվ իներտության ,որոշ ժամանակ դեռևս կշարունակեն շարժվել , և այդ ընթացքում հաղորդչում կառաջանա կարճատև հոսանք ։ Ստյուարտի և Թոլմենի փորձում մետաղալարով փաթաթված կոճը պտտական շարժման մեջ էր դրվում և ապա կտրուկ արգելակվում։ Արգելակելիս մետաղալարի ծայրերին սահուն հպակներով միացված գալվանաչափը գրանցում էր կարճատև հոսանք , որի ուղղությունը ցույց էր տալիս , որ այն ստեղծվել է բացասական լիցքով մասնիկի շարժմամբ ։ Չափելով հաղորդալարով անցած ընդհանուր լիցքի քանակը ՝ Ստյուարտը և Թոլմենը հաշվել են ազատ մասնիկի տեսակարար լիցքը , որի արժեքը մեծ ճշտությամբ համընկնում է էլեկտրոնի համար այլ եղանակով որոշված տեսակարար լիցքի արժեքին ։

Այսպիսով ՝ ապացուցվել է ,որ մետաղներում էլեկտրական հոսանքն ազատ էլեկտրոնների ուղղորդված շարժումն է ։

Posted in Ֆիզիկա տնային աշխատանք, Uncategorized

Հոսանքի աղբյուրներ: Էլեկտրական շղթա

Եթե լիցքավորված էլեկտրաչափի մետաղե գունդը միացնենք չլիցքավորված էլեկտրաչափի գնդին մետաղալարով, որին միացված է էլեկտրական լամպ, ապա կստանանք կարճատև լուսարձակում՝ այսինքն կարճատև հոսանք: Հոսանքը կտևի այնքան ժամանակ, մինչև էլեկտրաչափի լիցքերը հավասարվեն:
Screenshot_1.png
Որպեսզի հոսանքը տևական ժամանակ գոյություն ունենա, անհրաժեշտ է հոսանքի աղբյուրի առկայություն:

Հոսանքի աղբյուրը հատուկ սարք է, որը հաղորդիչում էլեկտրական դաշտ է առաջացնում:
Առաջին պարզագույն հոսանքի աղբյուրը, որը մինչ այժմ գործածվում է, գալվանական տարրն է, որն այդպես է կոչվում ի պատիվ իտալացի կենսաբան, բժիշկ Լուիջի Գալվանիի:
art232-galvani-luigi.jpg
Գալվանական մարտկոցները միանվագ օգտագործման հոսանքի աղբյուրներ են: Ավտոմեքենայում, բջջային հեռախոսներում մեծ կիրառություն ունեն բազմակի օգտագործման հոսանքի աղբյուրները՝ լիցքակուտակիչները (ակումուլյատորները), որոնք կարելի է լիցքավորել և նորից օգտագործել:
b3.jpg               AASG-166_big.jpg                203087.jpg
Հոսանքի ցանկացած նմանօրինակ աղբյուր երկու բևեռ ունի՝ դրական (+) և բացասական (-): Այդ բևեռների մոտ կուտակված տարբեր լիցքերը պայմանավորված են հոսանքի աղբյուրի ներսում ընթացող քիմիական ռեակցիաներով: Ռեակցիաները տեղի են ունենում հատուկ լուծույթի մեջ խորասուզված հաղորդիչների՝ էլեկտրոդների միջև:

Դրական էլեկտրոդն անվանում են անոդ, իսկ բացասականը՝ կաթոդ:
Եթե հաղորդալարերի միջոցով հոսանքի սպառիչը՝ օրինակ լամպը կամ զանգը միացվի հոսանքի աղբյուրին, ապա նրանց միջով հոսանք կանցնի՝ լամպը կլուսարձակի, զանգը կհնչի:
0004-004-Vyberite-pary.png
Հոսանքի աղբյուրը և հոսանքի սպառիչը միացված հաղորդալարերով կազմում են էլեկտրական շղթա:
Էլեկտրական շղթաները ներկայացնող գծագրերը կոչվում են էլեկտրական սխեմաներ:
Էլեկտրական շղթայի յուրաքանչյուր տարր սխեմայում պատկերվում է հատուկ պայմանական նշանով: Նշաններից մի քանիսը ներկայացված են աղյուսակում:
Screenshot_3.png
Շղթաները բացի հոսանքի աղբյուրից և սպառիչներից, պարունակում են անջատիչներ, որոնց միջոցով կարելի է բացել կամ փակել շղթան՝ կարգավորելով հոսանքի անցումը, և չափիչ սարքեր՝ չափումներ կատարելու համար:
13.gif
Շղթայում էլեմենտները միմյանց կարող են միացվել հաջորդական կամ զուգահեռ:
Բացի հոսանքի քիմիական աղբյուրիցկան նաև հոսանքի ֆիզիկական աղբյուրներ, որտեղ մեխանիկական, ջերմային, էլեկտրամագնիսական, լուսային և այլ էներգիաներ փոխակերպվում են էլեկտրականի: Այդպիսի հոսանքի աղբյուրի օրինակ է էլեկտրական գեներատորը:
‘Внутренний вид электрической станции в Гундукуше’ [Иолотань].jpg